Runge-Kutta Central Discontinuous Galerkin Methods for the Special Relativistic Hydrodynamics
نویسندگان
چکیده
Abstract. This paper develops Runge-Kutta PK-based central discontinuous Galerkin (CDG) methods with WENO limiter to the oneand two-dimensional special relativistic hydrodynamical (RHD) equations, K = 1,2,3. Different from the non-central DG methods, the Runge-Kutta CDG methods have to find two approximate solutions defined on mutually dual meshes. For each mesh, the CDG approximate solutions on its dual mesh are used to calculate the flux values in the cell and on the cell boundary so that the approximate solutions on mutually dual meshes are coupled with each other, and the use of numerical flux will be avoided. The WENO limiter is adaptively implemented via two steps: the “troubled” cells are first identified by using a modified TVB minmod function, and then the WENO technique is used to locally reconstruct new polynomials of degree (2K+1) replacing the CDG solutions inside the “troubled” cells by the cell average values of the CDG solutions in the neighboring cells as well as the original cell averages of the “troubled” cells. Because the WENO limiter is only employed for finite “troubled” cells, the computational cost can be as little as possible. The accuracy of the CDG without the numerical dissipation is analyzed and calculation of the flux integrals over the cells is also addressed. Several test problems in one and two dimensions are solved by using our Runge-Kutta CDGmethods with WENO limiter. The computations demonstrate that our methods are stable, accurate, and robust in solving complex RHD problems.
منابع مشابه
Discontinuous Galerkin Methods for Convection-Dominated Problems
In this paper, we review the development of the Runge–Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge–Kutta time discretizations, that allows the m...
متن کاملError Estimates of Runge-Kutta Discontinuous Galerkin Methods for the Vlasov-Maxwell System
In this paper, error analysis is established for Runge-Kutta discontinuous Galerkin (RKDG) methods to solve the Vlasov-Maxwell system. This nonlinear hyperbolic system describes the time evolution of collisionless plasma particles of a single species under the self-consistent electromagnetic field, and it models many phenomena in both laboratory and astrophysical plasmas. The methods involve a ...
متن کاملDiscontinuous Galerkin Methods for Weakly Coupled Hyperbolic MultiDomain Problems
In this paper, we develop and analyze the Runge-Kutta discontinuous Galerkin (RKDG) method to solve weakly coupled hyperbolic multi-domain problems. Such problems involve transfer type boundary conditions with discontinuous fluxes between different domains, calling for special techniques to prove stability of the RKDG methods. We prove both stability and error estimates for our RKDG methods on ...
متن کاملAnalysis of an Embedded Discontinuous Galerkin Method with Implicit-explicit Time-marching for Convection-diffusion Problems
In this paper, we analyze implicit-explicit (IMEX) Runge-Kutta (RK) time discretization methods for solving linear convection-diffusion equations. The diffusion operator is treated implicitly via the embedded discontinuous Galerkin (EDG) method and the convection operator explicitly via the upwinding discontinuous Galerkin method.
متن کامل